• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Studying the Generalization Behavior of Surrogate Models for Punch-Bending by Generating Plausible Counterfactuals
 
  • Details
  • Full
Options
2026
Conference Paper
Title

Studying the Generalization Behavior of Surrogate Models for Punch-Bending by Generating Plausible Counterfactuals

Abstract
Punch-bending is an industrial, pivotal process that allows to rapidly manufacture large quantities of products by bending semi-finished products, such as metal sheets or -wires, into target geometries. To ensure that the desired geometry can be reliably produced, a suitable process configuration, such as the used tool geometries and material properties, is required. Unlike traditional expensive trial-and-error approaches, we propose a machine learning surrogate model for the punch-bending process and subsequent plausible counterfactual explanations, which suggest process configurations for a desired target geometry. For this to work, the surrogate model must exhibit realistic generalization behavior. We analyze the generalization behavior of a surrogate model for a punch-bending scenario by generating plausible counterfactuals, and show that these also yield better process configurations compared to a baseline.
Author(s)
Mazur, Andreas
Universität Bielefeld
Peters, Henning
Fraunhofer-Institut für Entwurfstechnik Mechatronik IEM  
Artelt, André
Universität Bielefeld
Koller, Lukas
Technische Universität München
Hartmann, Christoph
Technische Universität München
Trächtler, Ansgar  
Fraunhofer-Institut für Entwurfstechnik Mechatronik IEM  
Hammer, Barbara
Universität Bielefeld
Mainwork
Artificial Neural Networks and Machine Learning - ICANN 2025. Proceedings. Part IV  
Project(s)
Datengetriebene Prozessmodellierung in der Stanz-Biege-Technologie  
Funder
Deutsche Forschungsgemeinschaft  
Conference
International Conference on Artificial Neural Networks 2025  
DOI
10.1007/978-3-032-04555-3_16
Language
English
Fraunhofer-Institut für Entwurfstechnik Mechatronik IEM  
Keyword(s)
  • Counterfactual Explanations

  • Explainable AI

  • Forming Technology

  • Machine Learning

  • Manifold Learning

  • Punch-Bending

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024