• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Self-Detection of Fixture Looseness in Smart Sensor Systems using Machine Learning
 
  • Details
  • Full
Options
September 2025
Master Thesis
Title

Self-Detection of Fixture Looseness in Smart Sensor Systems using Machine Learning

Title Supplement
Master Thesis
Abstract
Development of a methodology for autonomously detecting loose mounting of vibration-based smart sensor systems using machine learning (ML). The research focuses on the following questions: 1. Can a Micro-Electro-Mechanical Systems (MEMS) based vibration sensor detect mounting looseness? 2. Can a Support Vector Machine (SVM) algorithm generalise mounting looseness detection across fixtures made of different materials?
Thesis Note
Schmalkalden, Hochschule, Master Thesis, 2025
Author(s)
Karumanchi, Jaganmohan
Schmalkalden University of Applied Sciences
Advisor(s)
Roppel, Carsten
Schmalkalden University of Applied Sciences
Liebermann, Joris
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Open Access
File(s)
Download (10.86 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.24406/publica-5607
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Keyword(s)
  • bolt looseness

  • vibration

  • support vector machine

  • predictive maintenance

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024