• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. A Large-Scale Dataset for Humanoid Robotics Enabling a Novel Data-Driven Fall Prediction
 
  • Details
  • Full
Options
2025
Conference Paper
Title

A Large-Scale Dataset for Humanoid Robotics Enabling a Novel Data-Driven Fall Prediction

Abstract
In this paper, we present a comprehensive dataset comprising 37.9 hours of sensor data collected from humanoid robots, including 18.3 hours of walking and 2,519 recorded falls. This extensive dataset is a valuable resource for various robotics and machine learning applications. Leveraging this data, we propose RePro-TCN, a Temporal Convolutional Network (TCN) enhanced with two novel extensions: Relaxed Loss Formulation and Progressive Forecasting. Predicting falls is a critical capability in humanoid robotics for implementing countermeasures such as lunging or stopping the walk. Thanks to the new dataset, we train RePro-TCN and demonstrate its superiority over previous approaches under real-world conditions that were previously unattainable.
Author(s)
Urbann, Oliver  
Fraunhofer-Institut für Materialfluss und Logistik IML  
Eßer, Julian
Fraunhofer-Institut für Materialfluss und Logistik IML  
Kleingarn, Diana
Technische Universität Dortmund
Moos, Arne
Technische Universität Dortmund
Brämer, Dominik
Technische Universität Dortmund
Brömmel, Piet
Fraunhofer-Institut für Materialfluss und Logistik IML  
Bach, Nicolas
Fraunhofer-Institut für Materialfluss und Logistik IML  
Jestel, Christian  
Fraunhofer-Institut für Materialfluss und Logistik IML  
Larisch, Aaron
TU Dortmund University
Kirchheim, Alice
Fraunhofer-Institut für Materialfluss und Logistik IML  
Mainwork
IEEE International Conference on Robotics and Automation, ICRA 2025  
Conference
International Conference on Robotics and Automation 2025  
DOI
10.1109/ICRA55743.2025.11128646
Language
English
Fraunhofer-Institut für Materialfluss und Logistik IML  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024