• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Performance and Energy Consumption of Smart Sensors for Vibration-Based Anomaly Detection
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Performance and Energy Consumption of Smart Sensors for Vibration-Based Anomaly Detection

Abstract
Anomaly detection in vibration signals is vital for condition monitoring in industrial and structural health applications. This study evaluates cost-effective, energy-efficient smart sensors combining MEMS accelerometers with microcontrollers against a laboratory setup. Two platforms - Arduino Nano 33 BLE and Analog Devices MAX78000 - were assessed for performance, energy consumption, and real-time anomaly detection feasibility. Results indicate that all embedded systems achieve accuracy comparable to the reference setup. Notably, the MAX78000 offers superior inference speed and processing capabilities with a modest energy trade-off. Integrated micro-electromechanical systems (MEMS) and microcontroller solutions prove to be viable, scalable alternatives for on-site condition monitoring.
Author(s)
Lehmann, Martin  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Liebermann, Joris
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mayer, Dirk  orcid-logo
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Beyer, Volkhard  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mainwork
Smart Systems Integration Conference and Exhibition, SSI 2025  
Project(s)
Prototyping- und Test-Zentrum für Systeme der Künstlichen Intelligenz am Fraunhofer-Institutsteil Entwicklung Adaptiver Systeme (EAS) Dresden  
Funder
Freistaat Sachsen
Conference
Smart Systems Integration Conference and Exhibition 2025  
DOI
10.1109/SSI65953.2025.11107214
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Keyword(s)
  • Arduino

  • CNN

  • Embedded AI

  • Energy Efficiency

  • MAX78000

  • MEMS

  • Smart Sensors

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024