• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Testing compact, fused silica resonator based inertial sensors in a gravitational wave detector prototype facility
 
  • Details
  • Full
Options
2025
Journal Article
Title

Testing compact, fused silica resonator based inertial sensors in a gravitational wave detector prototype facility

Abstract
Future gravitational wave observatories require significant advances in all aspects of their seismic isolation; inertial sensors being a pressing example. Inertial sensors using gram-scale high mechanical Q factor (Q) glass resonators combined with compact interferometric readout are promising alternatives to kilogram-scale conventional inertial sensors. We have produced fused silica resonators suitable for low frequency inertial sensing and demonstrated that Qs of over 150 000 are possible. One resonator we produced was combined with a homodyne quadrature interferometer (HoQI) to read out the test mass displacement to form an inertial sensor. This is the first time a HoQI was used with a high Q resonator. The resulting sensor was tested against other commercial, kilogram scale inertial sensors at the AEI 10 m Prototype facility. Despite the dynamic range challenges induced by the test mass motion, we can match the excellent noise floors HoQIs have achieved so far with slow-moving or stationary test masses, showing HoQIs as an excellent candidate for the readout of such sensors. We evaluate the setup as an inertial sensor, showing the best performance demonstrated by any gram-scale sensor to date, with comparable sensitivity to the significantly bulkier sensors used in gravitational wave detectors today. These sensors’ compact size, self-calibration, and vacuum compatibility make them ideal candidates for the inertial sensing requirements in future gravitational wave detectors.
Author(s)
Carter, Jonathan Joseph
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Birckigt, Pascal
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
Lehmann, Johannes
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Basalaev, Artem E.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Kranzhoff, S. L.
Universiteit Maastricht
Al-Kershi, S.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Carlassara, M.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Chiarini, G.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Khan, F.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Leibeling, Gilbert  
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
Lück, Harald
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Rothhardt, Carolin  
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
Risse, Stefan  
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
Sarkar, P.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Takano, Satoru
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
von Wrangel, J. S.A.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Wu, David S.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Koehlenbeck, Sina M.
Ginzton Laboratory
Journal
Classical and quantum gravity  
Open Access
File(s)
Download (1.8 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1088/1361-6382/adff34
10.24406/publica-5567
Additional link
Full text
Language
English
Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF  
Keyword(s)
  • gravitational wave detectors

  • inertial sensing

  • interferometric readout

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024