Options
August 27, 2025
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title
Linking heterogeneous microstructure informatics with expert characterization knowledge through customized and hybrid vision-language representations for industrial qualification
Title Supplement
Published on arXiv
Abstract
Rapid and reliable qualification of advanced materials remains a bottleneck in industrial manufacturing, particularly for heterogeneous structures produced via non-conventional additive manufacturing processes. This study introduces a novel framework that links microstructure informatics with a range of expert characterization knowledge using customized and hybrid vision-language representations (VLRs). By integrating deep semantic segmentation with pre-trained multi-modal models (CLIP and FLAVA), we encode both visual microstructural data and textual expert assessments into shared representations. To overcome limitations in general-purpose embeddings, we develop a customized similarity-based representation that incorporates both positive and negative references from expert-annotated images and their associated textual descriptions. This allows zero-shot classification of previously unseen microstructures through a net similarity scoring approach. Validation on an additively manufactured metal matrix composite dataset demonstrates the framework’s ability to distinguish between acceptable and defective samples across a range of characterization criteria. Comparative analysis reveals that FLAVA model offers higher visual sensitivity, while the CLIP model provides consistent alignment with the textual criteria. Z-score normalization adjusts raw unimodal and cross-modal similarity scores based on their local dataset-driven distributions, enabling more effective alignment and classification in the hybrid vision-language framework. The proposed method enhances traceability and interpretability in qualification pipelines by enabling human-in-the-loop decision-making without task-specific model retraining. By advancing semantic interoperability between raw data and expert knowledge, this work contributes toward scalable and domain-adaptable qualification strategies in engineering informatics.
Author(s)
Open Access
File(s)
Rights
CC BY-NC-ND 4.0: Creative Commons Attribution-NonCommercial-NoDerivatives
Language
English