• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Perturbations of embedded eigenvalues of asymptotically periodic magnetic Schrödinger operators on a cylinder
 
  • Details
  • Full
Options
2025
Journal Article
Title

Perturbations of embedded eigenvalues of asymptotically periodic magnetic Schrödinger operators on a cylinder

Abstract
We investigate the persistence of embedded eigenvalues for a class of magnetic Laplacians on an infinite cylindrical domain. The magnetic potential is assumed to be C2 and asymptotically periodic along the unbounded direction of the cylinder, with an algebraic decay rate toward a periodic background potential. Under the condition that the embedded eigenvalue of the unperturbed operator lies away from the thresholds of the continuous spectrum, we show that the set of nearby potentials for which the embedded eigenvalue persists forms a smooth manifold of finite and even codimension. The proof employs tools from Floquet theory, exponential dichotomies, and Lyapunov–Schmidt reduction. Additionally, we give an example of a potential which satisfies the assumptions of our main theorem.
Author(s)
Jansen, Jonas
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Maad Sasane, Sara
Lund University
Treschow, Wilhelm
Lund University
Journal
Journal of Mathematical Physics  
Open Access
File(s)
Download (4.72 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1063/5.0266328
10.24406/publica-5408
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Keyword(s)
  • Electronic band structure

  • Magnetic potential

  • Differentiable manifold

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024