Options
2025
Journal Article
Title
Toward more realistic career path prediction: evaluation and methods
Abstract
Predicting career trajectories is a complex yet impactful task, offering significant benefits for personalized career counseling, recruitment optimization, and workforce planning. However, effective career path prediction (CPP) modeling faces challenges including highly variable career trajectories, free-text resume data, and limited publicly available benchmark datasets. In this study, we present a comprehensive comparative evaluation of CPP models - linear projection, multilayer perceptron (MLP), LSTM, and large language models (LLMs) - across multiple input settings and two recently introduced public datasets. Our contributions are threefold: (1) we propose novel model variants, including an MLP extension and a standardized LLM approach, (2) we systematically evaluate model performance across input types (titles only vs. title+description, standardized vs. free-text), and (3) we investigate the role of synthetic data and fine-tuning strategies in addressing data scarcity and improving model generalization. Additionally, we provide a detailed qualitative analysis of prediction behaviors across industries, career lengths, and transitions. Our findings establish new baselines, reveal the trade-offs of different modeling strategies, and offer practical insights for deploying CPP systems in real-world settings.
Author(s)
Open Access
File(s)
Rights
CC BY 4.0: Creative Commons Attribution
Additional full text version
Language
English