• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Fingermark Image Quality Assessment with Random-Forest Classifier
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Fingermark Image Quality Assessment with Random-Forest Classifier

Abstract
Fingermarks, also known as latent fingerprints, which can be found on crime scenes, are used by law enforcement agencies to identify suspects. Dactyloscopic experts compare fingermarks from a crime scene with fingerprints of suspects taken under controlled conditions and stored in forensic databases. Only fingermark images of adequate quality can result in a conclusive match. Machine-learning techniques assessing the quality of fingermark images can support the tedious and time-consuming work of forensic experts. We propose a random forest model that classifies fingermark images based on handcrafted features into two classes indicating whether the images are of value for identification or not. This helps to ensure a sufficient quality of fingermark images to be examined.
Author(s)
Hmouda, Yasser
TU Darmstadt, Fachgebiet Graphisch-Interaktive Systeme  
Henniger, Olaf  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kuijper, Arjan  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Mainwork
13th International Workshop on Biometrics and Forensics, IWBF 2025. Proceedings  
Project(s)
Next Generation Biometric Systems  
Next Generation Biometric Systems  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Hessisches Ministerium für Wissenschaft und Kunst -HMWK-  
Conference
International Workshop on Biometrics and Forensics 2025  
DOI
10.1109/IWBF63717.2025.11113425
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Information Technology

  • Research Line: Computer vision (CV)

  • Research Line: Machine learning (ML)

  • LTA: Interactive decision-making support and assistance systems

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • Biometrics

  • Fingerprint recognition

  • Image quality

  • ATHENE

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024