• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Benefiting from quantum? A comparative study of Q-Seg, quantum-inspired techniques, and U-Net for crack segmentation
 
  • Details
  • Full
Options
September 24, 2024
Conference Paper
Title

Benefiting from quantum? A comparative study of Q-Seg, quantum-inspired techniques, and U-Net for crack segmentation

Abstract
Exploring the potential of quantum hardware for en hancing classical and real-world applications is an ongoing challenge. This study evaluates the performance of quantum and quantum-inspired methods compared to classical mod els for crack segmentation. Using annotated gray-scale im age patches of concrete samples, we benchmark a classical mean Gaussian mixture technique, a quantum-inspired fermion based method, Q-Seg a quantum annealing-based method, and a U-Net deep learning architecture. Our results indicate that quantum-inspired and quantum methods offer a promising alternative for image segmentation, particularly for complex crack patterns, and could be applied in near-future applications.
Author(s)
Srinivasan, Akshaya
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Geng, Alexander
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Macaluso, Antonio
Kiefer-Emmanouilidis, Maximilian
Moghiseh, Ali  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Mainwork
Forum Bildverarbeitung 2024  
Conference
Forum Bildverarbeitung 2024  
Image Processing Forum 2024  
DOI
10.58895/ksp/1000174496-10
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • Quantum computing

  • quantum image segmentation

  • quantum optimization

  • disordered systems

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024