• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A Hierarchical Feature-Based Time Series Clustering Approach for Data-Driven Capacity Planning of Cellular Networks
 
  • Details
  • Full
Options
August 4, 2025
Journal Article
Title

A Hierarchical Feature-Based Time Series Clustering Approach for Data-Driven Capacity Planning of Cellular Networks

Abstract
The growing popularity of cellular networks among users, primarily due to affordable prices and high speeds, has escalated the need for strategic capacity planning to ensure a seamless end-user experience and profitable returns on network investments. Traditional capacity planning methods rely on static analysis of network parameters with the aim of minimizing the CAPEX and the OPEX. However, to address the evolving dynamics of cellular networks, this paper advocates for a data-driven approach that considers user behavioral analysis in the planning process to make it proactive and adaptive. We introduce a Hierarchical Feature-based Time Series Clustering (HFTSC) approach that organizes clustering in a multi-level tree structure. Each level addresses a specific aspect of time series data using focused features, enabling explainable clustering. The proposed approach assigns labels to clusters based on the time series properties targeted at each level, generating annotated clusters while applying unsupervised clustering methods. To evaluate the effectiveness of HFTSC, we conduct a comprehensive case study using real-world data from thousands of network elements. Our evaluation examines the identified clusters from analytical and geographical perspectives, focusing on supporting network planners in data-informed decision-making and analysis. Finally, we perform an extensive comparison with several baseline methods to reflect the practical advantages of our approach in capacity planning and optimization.
Author(s)
Jain, Vineeta  orcid-logo
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Richter, Anna
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Fokow, Vladimir
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Schweigel, Mathias
Detecon International GmbH, Germany
Wetzker, Ulf  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Frotzscher, Andreas
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Journal
IEEE transactions on machine learning in communications and networking  
Project(s)
Cognitive and Automated Network Operations for Present and Beyond; Teilvorhaben: Anforderungsanalyse, Datenanalyse und Simulation für die KI-basierte Zustandsanalyse und -Vorhersage in 5G-Netzwerken  
Funder
Bundesministerium für Wirtschaft und Klimaschutz  
Open Access
DOI
10.1109/TMLCN.2025.3595125
Additional link
Full text
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Keyword(s)
  • Capacity planning

  • cellular networks

  • data-driven analysis

  • time series clustering

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024