Options
2024
Conference Paper
Title
Material Characterisation of Biaxial Glass-Fibre Woven Fabrics as a Function of Weave Pattern using Picture Frame Tests and Microscopic Analysis
Abstract
Due to their promising density-specific mechanical properties, textile reinforced composites are predestined for high performance material applications and are established materials in the aerospace, automotive, energy and sports sectors. Bi-axial woven fabrics are one possible way to produce such FRP composites. The reinforcing yarns are linked by weaving. By applying a load or deformation, they can be shaped in a double curve surface. Based on their specific production parameters, their draping properties can vary significantly. Draping simulations are used to predict the forming behaviour without relying on costly and time consuming trial and error experiments. However, these simulations require a broad material dataset to make accurate predictions. The aim of this work is to characterise different woven textile reinforcement structures for the drapeability.
The approach adapted is to analyse several woven fabrics made of glass rovings of different cross-sections and weaving kind using picture frame tests. The loads during lateral compression of the roving through bending and shearing will be measured against the change of roving cross section. Here, the textile will be glued in different deformation levels in order to cut out cross sections for microscopical analysis. With sufficient knowledge about such an agglomerate of the structural textile parameters, it is possible to forecast the folding initiation in given textile preforms
The approach adapted is to analyse several woven fabrics made of glass rovings of different cross-sections and weaving kind using picture frame tests. The loads during lateral compression of the roving through bending and shearing will be measured against the change of roving cross section. Here, the textile will be glued in different deformation levels in order to cut out cross sections for microscopical analysis. With sufficient knowledge about such an agglomerate of the structural textile parameters, it is possible to forecast the folding initiation in given textile preforms
Author(s)