• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Asymptotically Proved Numerical Coupling of a 2D Flexural Porous Plate with the 3D Stokes Fluid
 
  • Details
  • Full
Options
December 5, 2024
Journal Article
Title

Asymptotically Proved Numerical Coupling of a 2D Flexural Porous Plate with the 3D Stokes Fluid

Abstract
A numerical workflow for a linear multiscale fluid-structure interaction (FSI) problembetween 3D Stokes flow and an effective porous, homogenized 2D plate is presented. The underlyingeffective FSI model is obtained from the method of two-scale convergence for thin perforated andperiodic filter structures, performed in earlier works. On the micro scale, the numerical workflowcomprises the computation of the filter structure's effective homogenized stiffness tensors utilizinga beam finite element formulation, as well as the computation of the permeability tensor. On themacro scale, a monolithic finite element formulation for the FSI problem with conforming elementsis derived. Numerical results and sensitivity studies demonstrating the influence of design variationson the micro scale on the FSI solution are presented for woven filter structures.
Author(s)
Krier, Maxime  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Orlik, Julia  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Panasenko, Grigory
Steiner, Konrad  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Journal
Multiscale modeling & simulation  
Open Access
File(s)
Download (8.58 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1137/23M1627687
10.24406/h-490426
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • 2D-3D-PDE coupling

  • fluid-structure interaction

  • dimension reduction

  • plate homogenization

  • Hermite elements

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024