• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Dual wetting electrode surfaces for alkaline water electrolysis
 
  • Details
  • Full
Options
2025
Journal Article
Title

Dual wetting electrode surfaces for alkaline water electrolysis

Abstract
Nickel electrodes are widely used in alkaline water electrolysis, yet the remaining electrode overpotentials are leading to significant losses in electrochemical performance. These are partly due to the electrogenerated bubbles growing at the surface. Tuning the nickel surface for better bubble management is therefore of great relevance. Here, Direct Laser Writing is used to generate pillar-like surfaces with dual wetting behavior. This combines hydrophilic grooves with hydrophobic ripples on top of each pillar. Furthermore, the grooves show superspreading properties due to the capillary forces within them, which enables a fully wetted surface. The hydrophobic pillars serve as initial nucleation sites where the bubbles remain pinned during their growth. This results in a larger detachment size of the bubbles. In combination with an increase of the electrochemically active surface area by a factor of 9, a reduction of the overpotential for hydrogen evolution reaction of ≈ 24 % at -100 mA cm-2 is found.
Author(s)
Rox, Hannes
HZDR - Helmholtz-Zentrum Dresden-Rossendorf
Eckert, Kerstin
HZDR - Helmholtz-Zentrum Dresden-Rossendorf
Ränke, Fabian
Technische Universität Dresden
Zschach, Lis G.
Technische Universität Dresden
Yang, Xuegeng
HZDR - Helmholtz-Zentrum Dresden-Rossendorf
Mutschke, Gerd
HZDR - Helmholtz-Zentrum Dresden-Rossendorf
Lasagni, Andrés-Fabián  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Baumann, Robert
Technische Universität Dresden
Journal
International journal of hydrogen energy  
Open Access
DOI
10.1016/j.ijhydene.2025.06.118
Additional link
Full text
Language
English
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Keyword(s)
  • Alkaline water electrolysis

  • Bubble dynamics

  • Direct laser writing

  • Dual wetting

  • Hydrogen evolution reaction

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024