• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Automating Wood Species Detection and Classification in Microscopic Images of Fibrous Materials with Deep Learning
 
  • Details
  • Full
Options
May 6, 2024
Journal Article
Title

Automating Wood Species Detection and Classification in Microscopic Images of Fibrous Materials with Deep Learning

Abstract
We have developed a methodology for the systematic generation of a large image dataset of macerated wood references, which we used to generate image data for nine hardwood genera. This is the basis for a substantial approach to automate, for the first time, the identification of hardwood species in microscopic images of fibrous materials by deep learning. Our methodology includes a flexible pipeline for easy annotation of vessel elements. We compare the performance of different neural network architectures and hyperparameters. Our proposed method performs similarly well to human experts. In the future, this will improve controls on global wood fiber product flows to protect forests.
Author(s)
Nieradzik, Lars
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Sieburg-Rockel, Jördis
Helmling, Stephanie
Keuper, Janis  
Offenburg University
Weibel, Thomas
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Olbrich, Andrea
Stephani, Henrike  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Journal
Microscopy and microanalysis  
DOI
10.1093/mam/ozae038
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • deep learning

  • European Union Timber Regulation

  • maceration

  • vessel elements

  • wood identification

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024