• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Navigating the Landscape of AI Test Methods Using Taxonomy-Based Selection
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Navigating the Landscape of AI Test Methods Using Taxonomy-Based Selection

Abstract
Due to broad deployment of AI systems in risk-prone domains and AI regulations coming into effect, systematic risk-and quality assessments of AI systems have become increasingly important. Conducting such assessments involves identifying relevant quality criteria for a given AI system and selecting test methods, i.e., procedures for collecting and evaluating evidences and measurable quantities that fit the identified criteria. This selection process can be challenging due to the high complexity of the test method landscape and, in the context of independent assessments, due to potential conflicts of interest between the involved stakeholders. To address this challenge, we present a practical solution approach for systematic, taxonomy-based selection of test methods. The paper closes with an outline of the gaps and possible next steps for utilizing test methods to achieve scalable and comparable, independent AI assessments.
Author(s)
Pintz, Maximilian Alexander
University of Bonn
Schmitz, Anna  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Görge, Rebekka
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Schmidt, Sebastian
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Becker, Daniel  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Akila, Maram  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mock, Michael  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
IEEE/ACM International Workshop on Responsible AI Engineering, RAIE 2025. Proceedings  
Conference
International Workshop on Responsible AI Engineering 2025  
DOI
10.1109/RAIE66699.2025.00010
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • AI assessment

  • AI testing

  • taxonomy

  • test methods

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024