Options
2025
Conference Paper not in Proceedings
Title
Macro and Micro-Scale Non-Contact Imaging of Electrically Active Extended Defects in Merged PiN Schottky Diode Devices
Title Supplement
Paper presented at International Conference on Compound Semiconductor MANufacturing TECHnology 2025, 19 to 22 May, 2025, New Orleans
Abstract
This study presents a novel approach to device yield estimation based on the non-contact, corona-based QUAD (Quality, Uniformity, and Defects) technique for inline defect mapping in SiC epitaxial layers. The approach is applied to a merged PiN Schottky diode manufacturing process and is compared to final wafer-level electrical data. A new analysis method for QUAD defect mapping is introduced, incorporating die yield bin maps based on indie depletion voltage values, allowing for a direct comparison with final electrical device performance. Micro-scale, μQUAD and voltage data within each individual diode can gain further insight into the electrical nature of the defects causing the device failure. The results demonstrate a strong correlation between the inline QUAD bin map results and final device electrical properties, highlighting the potential of QUAD as a practical and powerful inline tool. This technique offers a complementary approach to UVPL defect imaging, identifying electrically active defects and enhancing estimations of the final production yield.
Author(s)