• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Complex-Phase, Data-Driven Identification of Grid-Forming Inverter Dynamics
 
  • Details
  • Full
Options
2025
Journal Article
Title

Complex-Phase, Data-Driven Identification of Grid-Forming Inverter Dynamics

Abstract
The increasing integration of renewable energy sources (RESs) into power systems requires the deployment of grid-forming inverters to ensure a stable operation. Accurate modeling of these devices is necessary. In this paper, a system identification approach to obtain low-dimensional models of gridforming inverters is presented. The proposed approach is based on a Hammerstein-Wiener parametrization of the normal-form model. The normal-form is a gray-box model that utilizes complex frequency and phase to capture non-linear inverter dynamics. The model is validated on two well-known control strategies: droop-control and dispatchable virtual oscillators. Simulations and hardware-in-the-loop experiments demonstrate that the normalform accurately models inverter dynamics across various operating conditions. The approach shows great potential for enhancing the modeling of RES-dominated power systems, especially when component models are unavailable or computationally expensive.
Author(s)
Büttner, Anna
Potsdam-Institut für Klimafolgenforschung -PIK-  
Würfel, Hans
Potsdam-Institut für Klimafolgenforschung -PIK-  
Liemann, Sebastian
TU Dortmund  
Schiffer, Johannes  orcid-logo
Fraunhofer-Einrichtung für Energieinfrastrukturen und Geotechnologien IEG  
Hellman, Frank
Potsdam-Institut für Klimafolgenforschung -PIK-  
Journal
IEEE transactions on smart grid  
DOI
10.1109/TSG.2025.3591891
Language
English
Fraunhofer-Einrichtung für Energieinfrastrukturen und Geotechnologien IEG  
Keyword(s)
  • Inverters

  • Grid forming

  • Power system dynamics

  • Computational modelling

  • System identification

  • Mathematical models

  • Power system stability

  • Voltage control

  • Nonlinear dynamical systems

  • Inverters

  • Renewable energy sources

  • Data-driven modeling

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024