• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Epitaxial and Fiber-Textured Stacks of Al0.7Sc0.3N/Mo/AlN Prepared by Magnetron Sputter Epitaxy for Bulk Acoustic Wave Devices: A Comparison using High Overtone Bulk Acoustic Wave Resonator
 
  • Details
  • Full
Options
2025
Journal Article
Title

Epitaxial and Fiber-Textured Stacks of Al0.7Sc0.3N/Mo/AlN Prepared by Magnetron Sputter Epitaxy for Bulk Acoustic Wave Devices: A Comparison using High Overtone Bulk Acoustic Wave Resonator

Abstract
Emerging 5G telecommunication has increased the demand for filters with high performance and wide bandwidth. Aluminum scandium nitride (AlScN) bulk acoustic wave resonators offer high quality factor (Q) and effective electromechanical coupling coefficient (k2eff), making them a promising candidate for 5G filters, due to their high piezoelectric coefficient (d33) and intrinsic electromechanical coupling coefficient (k2t). This study compares high overtone bulk acoustic wave resonators (HBAR) fabricated using fiber textured and epitaxial stacks of aluminum nitride (AlN), molybdenum (Mo), and AlScN on silicon (Si) substrates prepared by magnetron sputtering. The mosaicity, crystal texture, thickness, and piezoelectric properties of the sputtered films are studied using X‐ray diffraction (XRD), time‐of‐flight secondary ion mass spectrometry, and Berlincourt piezometry. Additionally, the frequency response of the resonators is studied using a vector network analyzer. The comparison revealed that the HBAR fabricated using epitaxial stack of AlScN/Mo/AlN/Si have a higher k2eff and Q than the fiber‐textured stack. Consequently, the figure of merit (k2eff x Q) calculated at ≈4 GHz indicates a 25% improvement in resonator performance. The study also shows that epi‐AlScN (XRD AlScN 0002 w‐full width at half maximum (FWHM) = 1.91°) grown on epitaxial Mo (XRD Mo 110 w‐FWHM = 0.63°) has superior crystalline quality than its fiber‐textured equivalent.
Author(s)
Sundarapandian, Balasubramanian  
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Feil, Niclas M.
University of Freiburg
Kirste, Lutz  
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Stranak, Patrik
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Prescher, Mario
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Raghuwanshi, Mohit
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
Ambacher, Oliver  
University of Freiburg
Journal
Physica status solidi. A  
Open Access
File(s)
Download (1.34 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1002/pssa.202500189
10.24406/publica-4945
Additional link
Full text
Language
English
Fraunhofer-Institut für Angewandte Festkörperphysik IAF  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024