• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Real-Time Anomaly Detection in Manufacturing: A Data-Driven Approach to Enhancing Production Efficiency through Online KPI Monitoring
 
  • Details
  • Full
Options
2025
Journal Article
Title

Real-Time Anomaly Detection in Manufacturing: A Data-Driven Approach to Enhancing Production Efficiency through Online KPI Monitoring

Abstract
This study addresses the challenges of traditional value stream mapping in the context of Industry 4.0, where real-time data collection on the shop floor is becoming increasingly important. Traditional methods often fail to address the complexity of modern dynamic production environments leading to inaccuracies (lack of expert knowledge) and time delays (manual intervention) in root cause analysis. We propose an approach that uses online detection of KPI anomalies to proactively detect deviations in production processes and identify the root causes of productivity losses in real time. Our method combines statistical metrics, predictive techniques, and ensemble models to improve the robustness of anomaly detection. The system we use allows real-time monitoring with dynamic adaptation of the model to changing production conditions. Validated by case studies in automated and manual assembly processes, we show that the causes of productivity losses are reliably identified during operation in different production environments.
Author(s)
Gram, Jonas
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Drees, Jörg
iFAKT GmbH
Stambera, Steffi
iFAKT GmbH
Jestädt, Martin
iFAKT GmbH
Di Cagno, Maurizio
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Bauernhansl, Thomas  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Journal
Procedia CIRP  
Conference
Conference on Manufacturing Systems 2025  
Open Access
DOI
10.1016/j.procir.2025.03.047
Additional link
Full text
Language
English
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • Industry 4.0

  • Machine Learning

  • Real-Time Anomaly Detection

  • Smart Manufacturing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024