• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Potato-Glow: Utilizing Glow for Vision-Based Anomaly Detection in an Industrial Context: A Comparative Benchmarking Approach
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Potato-Glow: Utilizing Glow for Vision-Based Anomaly Detection in an Industrial Context: A Comparative Benchmarking Approach

Abstract
In industrial food processing, significant financial losses occur due to the approval of substandard or defective potatoes that do not meet quality standards. The challenge is that potatoes vary widely in color, shape, and size, and the image data involved is often complex and nonlinear, making anomaly detection difficult. To address these issues, we explore the use of Glow-based Invertible neural networks as Anomaliedetection (INNs) for anomaly detection. While U-NET Autoencoders (UAEs) are effective at capturing complex structures, Glow-based INNs offer advantages in precisely modeling data distributions. Our approach optimizes Glow-based INNs specifically for potato image analysis, leading to improved performance over traditional methods. The enhanced interpretability of Glow-based INNs also supports their integration into industrial settings.
Author(s)
Wittke, Christian
Liebert, Artur
Friesen, Andrej  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Flatt, Holger  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Niggemann, Oliver
Mainwork
Bildverarbeitung in der Automation. Ausgewählte Beiträge des Jahreskolloquiums BVAu 2024  
Conference
Jahreskolloquium "Bildverarbeitung in der Automation" 2024  
Open Access
File(s)
Download (2.53 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1007/978-3-662-70997-9_2
10.24406/h-489788
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024