• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Anomaly Detection in IoT Networks: A Performance Comparison of Transformer, 1D-CNN, and GrowNet Models on the Bot-IoT Dataset
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Anomaly Detection in IoT Networks: A Performance Comparison of Transformer, 1D-CNN, and GrowNet Models on the Bot-IoT Dataset

Abstract
This paper presents an exploratory analysis of deep learning techniques for intrusion detection in IoT networks. Specifically, we investigate three innovative intrusion detection systems based on transformer, 1D-CNN and GrowNet architectures, comparing their performance against random forest and three-layer perceptron models as baselines. For each model, we study the multiclass classification performance using the publicly available IoT network traffic dataset Bot-IoT. We use the most important performance indicators, namely, accuracy, F1-score, and ROC, but also training and inference time to gauge the utility and efficacy of the models. In contrast to earlier studies where random forests were the dominant method for ML-based intrusion detection, our findings indicate that the transformer architecture outperforms all other methods in our approach.
Author(s)
Kusumastuti, Aurelia Farikha
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Rangelov, Denis  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Lämmel, Philipp  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Boerger, Michell  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Aleksandrov, Andrei
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Tcholtchev, Nikolay Vassilev
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Mainwork
DATA 2025, 14th International Conference on Data Science, Technology and Applications. Proceedings. Vol.1  
Conference
International Conference on Data Science, Technology and Applications 2025  
Open Access
DOI
10.5220/0013637600003967
Additional link
Full text
Language
English
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Keyword(s)
  • Transformer

  • Random Forest

  • Deep Neural Networks

  • CNN

  • Anomaly Detection

  • Intrusion Detection

  • IoT

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024