• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Understanding Postdeposition Treatments of Hole-Transporting Self-Assembling Molecules for Perovskite/Silicon Tandem Solar Cells
 
  • Details
  • Full
Options
2025
Journal Article
Title

Understanding Postdeposition Treatments of Hole-Transporting Self-Assembling Molecules for Perovskite/Silicon Tandem Solar Cells

Abstract
The introduction of carbazole-based self-assembling molecules (SAMs) as hole transport layers (HTLs) has been a key step in the development of highly efficient perovskite-based solar cells. To this date, most SAM-related studies have focused on the optimization and understanding of SAMs by changing system parameters before or during the SAM formation process. Postdeposition treatments, like a washing step or annealing treatment, are commonly utilized but have not yet been thoroughly investigated and optimized. Here, these treatments are systematically studied for the SAM [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) as the HTL in perovskite/silicon tandem solar cells. The multimethod experimental characterization of Me-4PACz layers, which introduces cyclic voltammetry as a valuable technique for HTL characterization, gives detailed insights into how postdeposition treatments affect the SAM and is further supported by optoelectrical device simulations. While a washing step removes loosely bound and less ordered agglomerates to create a pure monolayer, an enhanced SAM annealing temperature improves the orientation of Me-4PACz monolayers. Combined, the implementation of these optimized postdeposition treatments leads to an improvement of 3.4%abs in average power conversion efficiency and thus the fabrication of a 28.2%-efficient perovskite/silicon tandem solar cell, notably without any perovskite bulk passivation or passivation at the perovskite/C60 interface.
Author(s)
Landgraf, Jann Benedikt
Fraunhofer-Institut für Solare Energiesysteme ISE  
Gupta, Yashika
Fraunhofer-Institut für Solare Energiesysteme ISE  
Prasetio, Adi
King Abdullah University of Science and Technology
Lange, Stefan
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS  
Meßmer, Christoph Alexander  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Schwarz, Christian
Fraunhofer-Institut für Solare Energiesysteme ISE  
Fischer, Oliver  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Chanthalavong, Sithisak
Universität Freiburg
Er-Raji, Oussama
Fraunhofer-Institut für Solare Energiesysteme ISE  
Belén Camarada, María Belén
Universität Freiburg
Wolf, Stefaan de
King Abdullah University of Science and Technology
Schulze, Patricia  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Fischer, Anna
Universität Freiburg
Glunz, Stefan  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Borchert, Anna Juliane  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Journal
Advanced Functional Materials  
Open Access
DOI
10.1002/adfm.202508186
Additional link
Full text
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS  
Keyword(s)
  • hole transport layers

  • perovskite/silicon tandem solar cells

  • photovoltaics

  • postdeposition treatments

  • self-assembling molecules

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024