• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Reliable Evaluation of Attribution Maps in CNNs: A Perturbation-Based Approach
 
  • Details
  • Full
Options
2025
Journal Article
Title

Reliable Evaluation of Attribution Maps in CNNs: A Perturbation-Based Approach

Abstract
In this paper, we present an approach for evaluating attribution maps, which play a central role in interpreting the predictions of convolutional neural networks (CNNs). We show that the widely used insertion/deletion metrics are susceptible to distribution shifts that affect the reliability of the ranking. Our method proposes to replace pixel modifications with adversarial perturbations, which provides a more robust evaluation framework. By using smoothness and monotonicity measures, we illustrate the effectiveness of our approach in correcting distribution shifts. In addition, we conduct the most comprehensive quantitative and qualitative assessment of attribution maps to date. Introducing baseline attribution maps as sanity checks, we find that our metric is the only contender to pass all checks. Using Kendall’s Ƭ rank correlation coefficient, we show the increased consistency of our metric across 15 dataset-architecture combinations. Of the 16 attribution maps tested, our results clearly show SmoothGrad to be the best map currently available. This research makes an important contribution to the development of attribution maps by providing a reliable and consistent evaluation framework. To ensure reproducibility, we will provide the code along with our results.
Author(s)
Nieradzik, Lars
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Stephani, Henrike  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keuper, Janis  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Journal
International Journal of Computer Vision  
Open Access
DOI
10.1007/s11263-024-02282-6
Additional link
Full text
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024