• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A comparative study of Q-Seg, quantum-inspired techniques, and U-Net for crack image segmentation
 
  • Details
  • Full
Options
April 15, 2025
Journal Article
Title

A comparative study of Q-Seg, quantum-inspired techniques, and U-Net for crack image segmentation

Abstract
Exploring the potential of quantum hardware for enhancing classical and real-world applications is an ongoing challenge. This study evaluates the performance of quantum and quantum-inspired methods compared to classical models for crack segmentation. Using annotated grayscale image patches of concrete samples, we benchmark a classical mean Gaussian mixture technique, a quantum-inspired fermion-based method, Q-Seg - a quantum-annealing-based method, and a U-Net deep learning architecture. Our results indicate that quantum-inspired and quantum methods offer a promising alternative to image segmentation, particularly for complex crack patterns, and could be applied in near-future applications.
Author(s)
Srinivasan, Akshaya
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Geng, Alexander
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Macaluso, Antonio
Kiefer-Emmanouilidis, Maximilian
Moghiseh, Ali  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Journal
Technisches Messen : TM  
DOI
10.1515/teme-2025-0017
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • quantum computing

  • quantum image

  • segmentation

  • quantum optimization

  • image processing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024