• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Graph Neural Networks for Grid Control: Prospects in AI-assisted Transmission Grid Operation
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Graph Neural Networks for Grid Control: Prospects in AI-assisted Transmission Grid Operation

Abstract
Transmission grid congestion management and outage planning are critical tasks in modern grid operation due to thenon-linear nature of power flows and the large-scale optimization challenges faced by operators. Traditionally, overloadsare addressed through generator redispatch, a costly and therefore suboptimal measure. In the project "Graph NeuralNetworks for Grid Control" (GNN4GC), we investigate alternative strategies, focusing on topological remedial actionsthat could minimize or even completely eliminate redispatch costs. Topology optimization, a core aspect of this project,presents significant challenges due to its combinatorial nature, requiring extensive computational resources for powerflow calculations. To address this, GNN4GC is split into three stages. In the first stage, we explore the use of GraphNeural Networks (GNNs) to accelerate these calculations and benchmark their performance against established tools likepandapower and a DC power flow solver developed by 50Hertz Transmission GmbH and TenneT TSO GmbH. In thesecond stage, we use Reinforcement Learning and other heuristics to select suitable topologies and solve the topologyoptimization problem. As a third stage, we test the respective agent on real-life grids to benchmark the methodology. Theaim of the final stage is to build a recommender system that can be used in a control room in the future.
Author(s)
Holzhüter, Clara Juliane
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Lytaev, Pawel
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Dipp, Marcel
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Hassouna, Mohamed
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Brendlinger, Kurt
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Viebahn, Jan
Gegelman, Wiktor
Merz, Christian
Mainwork
ETG Kongress 2025  
Project(s)
Graph Neuronale Netze für die Netzsteuerung; Teilvorhaben: Entwicklung eines Empfehlungssystems basierend auf Graph Neuronalen Netzen und Reinforcement Learning  
Funder
Bundesministerium für Wirtschaft und Energie  
Conference
Energietechnische Gesellschaft (ETG Kongress) 2025  
Link
Link
Language
English
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024