• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Simulation-based high-speed elongational rheometer for Carreau-type materials
 
  • Details
  • Full
Options
2025
Journal Article
Title

Simulation-based high-speed elongational rheometer for Carreau-type materials

Abstract
For the simulation-based design of fiber melt spinning processes, the accurate modeling of the processed polymer with regard to its material behavior is crucial. In this work, we develop a high-speed elongational rheometer for Carreau-type materials, making use of process simulations and fiber diameter measurements. The procedure is based on a unified formulation of the fiber spinning model for all material types (Newtonian and quasi-Newtonian), whose material laws are strictly monotone in the strain rate. The parametrically described material law for the elongational viscosity implies a nonlinear optimization problem for the parameter identification, for which we propose an efficient, robust gradient-based method. The work can be understood as a proof of concept, a generalization to other, more complex materials is possible.
Author(s)
Kannengießer, Lukas
Universität Trier
Arne, Walter  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Bier, Alexander M.
Friedrich-Alexander-Universität Erlangen-Nürnberg
Marheineke, Nicole
Universität Trier
Schubert, Dirk Wolfram
Friedrich-Alexander-Universität Erlangen-Nürnberg
Wegener, Raimund  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Journal
Journal of Mathematics in Industry  
Project(s)
Algorithmic Optimization  
Funder
Deutsche Forschungsgemeinschaft -DFG-, Bonn  
Open Access
DOI
10.1186/s13362-025-00168-x
Additional link
Full text
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • Boundary value problem

  • Elongational rheometer

  • Fiber spinning

  • Generalized Newtonian material

  • Parameter identification

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024