• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Physics-Informed Machine Learning for TCO-Layer Thickness Prediction and Process Analysis from Multi-Spectral Images
 
  • Details
  • Full
Options
2025
Journal Article
Title

Physics-Informed Machine Learning for TCO-Layer Thickness Prediction and Process Analysis from Multi-Spectral Images

Abstract
We present a machine learning model for a robust and fast evaluation of thickness maps of Transparent Conducting Oxide (TCO) layers based on multichannel spectral images only. The model is applicable for the quality inspection of heterojunction solar cells with textured surfaces and an amorphous silicon layer stack beneath the TCO layer. Within our physics-informed approach, synthetic data are created online for model training by simulating reflection maps for given TCO thickness variations. The developed method determines a full-scale TCO-thickness map in 1 s from inline measurable RGB image data. The spatially resolved analysis allows inline quality inspection of the thickness distributions. Additionally, the thickness profile at the edges is inspected with high spatial resolution in Silicon heterojunction solar cell precursors, where TCO edge exclusion at the rear side is required to avoid shunting. We demonstrate our approach by quantifying the completeness and masking area for narrow masks, which is a process optimization step for increasing cell efficiency. We derive sorting criteria for an early-stage process control regarding shunts and quantify the influence of the positioning accuracy of the mask on the short-circuit current.
Author(s)
Wörnhör, Alexandra
Fraunhofer-Institut für Solare Energiesysteme ISE  
Senthil Kumar, Saravana Kumar
Fraunhofer-Institut für Solare Energiesysteme ISE  
Burkhardt, Daniel
Fraunhofer-Institut für Solare Energiesysteme ISE  
Schönauer, Jonas Johannes Felix
Fraunhofer-Institut für Solare Energiesysteme ISE  
Pingel, Sebastian  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Voicu Vulcanean, Ioan  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Steinmetz, Anamaria  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Rein, Stefan  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Demant, Matthias  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Journal
Solar energy materials and solar cells  
DOI
10.1016/j.solmat.2025.113541
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • machine learning

  • physics-informed

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024