• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Inline Wear Detection in High-Speed Progressive Dies Using Photometric Stereo
 
  • Details
  • Full
Options
2025
Journal Article
Title

Inline Wear Detection in High-Speed Progressive Dies Using Photometric Stereo

Abstract
The progressive forming of complex components, including blanking, deep-drawing, and bending, represents an economically efficient sheet metal processing method. Wear control is crucial for ensuring product quality by preventing defects and minimizing material waste. The integration of optical sensors for qualitative wear detection, driven by advancing digitisation and miniaturisation, supplements conventional monitoring techniques. This study introduces a modular, agile camera-based measurement system that records component geometry and allows cause-specific feedback on wear progression. By assigning anomalies to distinct process stages, the system enhances defect diagnosis. The employed photometric stereo analysis relies on multiple images captured under varying illumination angles. Photometric reconstruction enables the calculation of normal maps, facilitating the assessment of surface characteristics through pixel-wise brightness variations. Deviations from predefined standards allow for the precise identification of irregularities. By delivering real-time, non-intrusive insights into the forming process, this approach establishes a foundation for efficient, reliable, and adaptive manufacturing. Its contributions to intelligent forming technologies enable enhanced process control and quality assurance, advancing the state of modern industrial production. Through the fusion of optical monitoring and computational analysis, the proposed methodology represents a significant step towards data-driven, self-optimising manufacturing systems.
Author(s)
Moske, Jonas
TU Darmstadt  
Kutlu, Hasan  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Steinmeier, Adrian
TU Darmstadt  
Groenewold, Phil
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Santos, Pedro
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kuijper, Arjan  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Weinmann, Andreas
Hochschule Darmstadt  
Groche, Peter
TU Darmstadt  
Journal
MATEC web of conferences  
Project(s)
Real-time capable wear models  
Funder
Bundesministerium für Wirtschaft und Energie -BMWI-  
Conference
International Deep Drawing Research Group (IDDRG Conference) 2025  
DOI
10.1051/matecconf/202540801031
10.24406/publica-4694
File(s)
matecconf_iddrg2025_01031.pdf (637.45 KB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Automotive Industry

  • Research Line: Computer vision (CV)

  • LTA: Generation, capture, processing, and output of images and 3D models

  • Real-time reconstruction

  • Photometric properties

  • Surface representation

  • Scanning methods

  • Visual data analysis

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024