• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Energy Analysis of Row-Stationary Dataflow in CNN Computation on Microcontrollers
 
  • Details
  • Full
Options
April 29, 2025
Master Thesis
Title

Energy Analysis of Row-Stationary Dataflow in CNN Computation on Microcontrollers

Abstract
In this thesis, the Row Stationary (RS) dataflow introduced in Eyeriss is suggested for the MCU. RS maximizes the input reuse and minimizes the partial sum movement. This reduces the energy consumption of the model. The LeNet model is chosen to employ different data types reuse of RS dataflow onto the MCU. The convolutional layers are implemented with input pixel (row-wise) and filter weight reuse (row-wise) and fully connected layers are implemented with input pixel and psum reuse. An analysis framework is considered to compare the conventional and RS dataflow under the same memory area. The CONV layers of RS dataflow save energy and latency up to 14.42 % and 14.42 % respectively in comparison to the conventional dataflow. On the other hand, FC layers save both energy and latency up to 16 %. The energy and latency of the LeNet model are improved by almost 14 % by reducing the SRAM memory accesses for RS dataflow.
Thesis Note
Chemnitz, TU, Master Thesis, 2024
Author(s)
Koppala, Monisha Rao
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Advisor(s)
Hardt, Wolfram
Technische Universität Chemnitz  
Saleh, Shadi
Technische Universität Chemnitz  
Beyer, Volkhard  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
DOI
10.60687/2025-0048
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Keyword(s)
  • CNN

  • MCU

  • Row Stationary

  • Energy

  • Latency

  • Convolutional Neural Network

  • Microcontroller

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024