• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Towards Privacy-Preserving Machine Learning in Sovereign Data Spaces: Opportunities and Challenges
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Towards Privacy-Preserving Machine Learning in Sovereign Data Spaces: Opportunities and Challenges

Abstract
The world of big data has unlocked novel avenues for organizations to generate value via sharing data. Current data ecosystem initiatives such as Gaia-X and IDS are introducing data-driven business models that facilitate access to diverse data sources and automate data exchange processes among organizations. However, this also poses challenges for organizations and their customers in preserving control over their own data. This paper provides an overview of the extension requirements on current usage control concepts in data spaces through technical means to augment data privacy guarantees. Our analysis clarifies the deficiencies regarding privacy within the realms of data sovereignty and sovereign data spaces, as well as the risks and opportunities associated with the application of machine learning on sensitive data. This work identifies promising foundational elements and presents areas of research for the integration of privacy-enhancing technologies into usage control for remote data science.
Author(s)
Akbari Gurabi, Mehdi  orcid-logo
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Hermsen, Felix  
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Mandal, Avikarsha  
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Decker, Stefan  
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Mainwork
Privacy and Identity Management. Sharing in a Digital World. 18th IFIP WG 9.2, 9.6/11.7, 11.6 International Summer School, Privacy and Identity 2023  
Project(s)
Digital Technologies ActiNg as a Gatekeeper to information and data flOws  
Fortschrittliche Technologien zur Wahrung der Privatsphäre für Wissensgraphen in Unternehmen und künstliche Intelligenz  
Funder
European Commission  
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
International Summer School, Privacy and Identity 2023  
File(s)
Download (1.12 MB)
Rights
Under Copyright
DOI
10.1007/978-3-031-57978-3_11
10.24406/publica-4595
Language
English
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Keyword(s)
  • Privacy-Preserving Machine Learning

  • Privacy Enhancing Technologies

  • Data Sovereignty

  • Data Spaces

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024