• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. On the fidelity versus privacy and utility trade-off of synthetic patient data
 
  • Details
  • Full
Options
May 16, 2025
Journal Article
Title

On the fidelity versus privacy and utility trade-off of synthetic patient data

Abstract
The use of synthetic data is a widely discussed and promising solution for privacy-preserving medical research. Synthetic data may, however, not always rule out the risk of re-identifying characteristics of real patients and can vary greatly in terms of data fidelity and utility. We systematically evaluate the trade-offs between privacy, fidelity, and utility across five synthetic data models and three patient-level datasets. We evaluate fidelity based on statistical similarity to the real data, utility on three machine learning use cases, and privacy via membership inference, singling out, and attribute inference risks. Synthetic data without differential privacy (DP) maintained fidelity and utility without evident privacy breaches, whereas DP-enforced models significantly disrupted correlation structures. K-anonymity-based data sanitization of demographic features, while preserving fidelity, introduced notable privacy risks. Our findings emphasize the need to advance methods that effectively balance privacy, fidelity, and utility in synthetic patient data generation.
Author(s)
Adams, Tim  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Birkenbihl, Colin  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Otte, Karen
Ng, Hwei Geok
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Rieling, Jonas Adrian
Näher, Anatol-Fiete
Sax, Ulrich
Prasser, Fabian
Fröhlich, Holger  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Journal
iScience  
Open Access
DOI
10.1016/j.isci.2025.112382
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Keyword(s)
  • synthetic data

  • data quality

  • data utility

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024