• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Monitoring and Maintaining Laser Surface Texture Quality Based on Acoustic and Optical Process Emissions during Direct Laser Interference Patterning
 
  • Details
  • Full
Options
2025
Journal Article
Title

Monitoring and Maintaining Laser Surface Texture Quality Based on Acoustic and Optical Process Emissions during Direct Laser Interference Patterning

Abstract
Direct laser interference patterning (DLIP) is a promising technique for fabricating periodic surface structures on large areas, but controlling process quality can be challenging due to laser power fluctuations. This study presents a novel monitoring approach using acoustic and optical emissions to diagnose and correct these fluctuations during DLIP structure fabrication. Experiments are conducted using a nanosecond-pulsed IR laser to create 6 μm periodic microstructures on stainless steel. Significant laser power fluctuations are observed over time, resulting in noticeable surface texture inhomogeneity across larger areas. Acoustic and optical emissions, recorded via microphone and photodiodes respectively, are found to correlate well with local structure depth, surface roughness, and macroscopic appearance of the textured surface. A strategy for in-process correction is demonstrated using a PI controller to adjust laser power based on acoustic emission feedback in the 18-22 kHz range during processing. Implementing this closed-loop control system achieves a homogeneous texture with a consistent 2 μm structure depth, compared to significant variations between 0.8 and 2.4 μm without the controller. This monitoring and control approach offers a simple, cost-effective solution for ensuring quality and consistency in large-area DLIP fabrication processes, potentially improving the reliability and efficiency of surface texturing applications.
Author(s)
Steege, Tobias  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Schell, Frederic  orcid-logo
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Belkin, Adrian
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Zwahr, Christoph  orcid-logo
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Lasagni, Andrés-Fabián  
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Journal
Advanced engineering materials  
Project(s)
SustainablY aNd digiTally driven hiErarchical laser texturing for Complex Surfaces  
Multi-Ebenen gekoppelte Laserproduktionstechnologie mit KI-basierter Entscheidungsplattform (MEDIUS); Teilprojekt: Systemintegration, Validieren und Verwerten eines Photonic Predictive Manufacturing Systems im Bereich Laserproduktionstechnologien  
Multi-Ebenen gekoppelte Laserproduktionstechnologie mit KI-basierter Entscheidungsplattform (MEDIUS); Teilprojekt: Realisieren einer integrativen Lösung zur zentralen Datenhaltung und Analyse für die Lasermikromaterialbearbeitung  
Funder
European Commission  
Bundesministerium für Bildung und Forschung -BMBF-  
Bundesministerium für Bildung und Forschung -BMBF-  
Open Access
DOI
10.1002/adem.202402505
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS  
Keyword(s)
  • acoustic emissions

  • direct laser interference patterning

  • laser patterning

  • process control

  • process monitoring

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024