• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Benchmarking Quantum Reinforcement Learning
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Benchmarking Quantum Reinforcement Learning

Abstract
Quantum Reinforcement Learning (QRL) has emerged as a promising research field, leveraging the principles of quantum mechanics to enhance the performance of reinforcement learning (RL) algorithms. However, despite its growing interest, QRL still faces significant challenges. It is still uncertain if QRL can show any advantage over classical RL beyond artificial problem formulations. Additionally, it is not yet clear which streams of QRL research show the greatest potential. The lack of a unified benchmark and the need to evaluate the reliance on quantum principles of QRL approaches are pressing questions. This work aims to address these challenges by providing a comprehensive comparison of three major QRL classes: Parameterized Quantum Circuit based QRL (PQC-QRL) (with one policy gradient (QPG) and one Q-Learning (QDQN) algorithm), Free Energy based QRL (FE-QRL), and Amplitude Amplification based QRL (AA-QRL). We introduce a set of metrics to evaluate the QRL algorithms on the widely applicable benchmark of gridworld games. Our results provide a detailed analysis of the strengths and weaknesses of the QRL classes, shedding light on the role of quantum principles in QRL and paving the way for future research in this field.
Author(s)
Kruse, Georg  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Coelho, Rodrigo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Roßkopf, Andreas  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Wille, Robert
Technische Universität München  
Lorenz, Jeanette Miriam  orcid-logo
Ludwig-Maximilians-Universität München
Mainwork
ICAART 2025, 17th International Conference on Agents and Artificial Intelligence. Proceedings. Vol.1  
Project(s)
Munich Quantum Valley
Funder
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie  
Conference
International Conference on Agents and Artificial Intelligence 2025  
Open Access
DOI
10.5220/0013393200003890
Language
English
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • quantum reinforcement learning

  • QRL

  • quantum Boltzmann machines

  • parameterized quantum circuit

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024