• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Predictive modeling to uncover Parkinson’s disease characteristics that delay diagnosis
 
  • Details
  • Full
Options
2025
Journal Article
Title

Predictive modeling to uncover Parkinson’s disease characteristics that delay diagnosis

Abstract
PD patients present with diverse symptoms, complicating timely diagnosis. We analyzed 1124 PD trajectories using a novel model-based approach to estimate whether diagnosis was early or late compared to cohort averages. Higher age, specific non-motor symptoms, and fast disease progression were linked to later diagnosis, while gait impairment led to earlier diagnosis. Our findings are in line with a biological definition of PD that extends beyond classical motor symptoms.
Author(s)
Hähnel, Tom  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Raschka, Tamara  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Klucken, Jochen
University of Luxembourg
Glaab, Enrico
University of Luxembourg
Corvol, Jean Christophe
Hôpital Universitaire Pitié Salpêtrière
Falkenburger, Björn H.
Medizinische Fakultät Carl Gustav Carus
Fröhlich, Holger  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Journal
npj Parkinson's Disease  
Open Access
DOI
10.1038/s41531-025-00923-2
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024