• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Enriching RDF Data with LLM Based Named Entity Recognition and Linking on Embedded Natural Language Annotations
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Enriching RDF Data with LLM Based Named Entity Recognition and Linking on Embedded Natural Language Annotations

Abstract
In this paper, we present a processing pipeline for transforming natural language annotations in RDF graphs into machine-readable and interoperable semantic annotations. The pipeline uses Named Entity Recognition (NER) and Entity Linking (EL) techniques based on a foundational Large Language Model (LLM), combined with a Knowledge Graph (KG) based knowledge injection approach for entity disambiguation and self-verification. Through a running example in the paper, we demonstrate that the pipeline can increase the number of semantic annotations in an RDF graph derived from information contained in natural language annotations. The evaluation of the proposed pipeline shows that the LLM-based NER approach produces results comparable to those of fine-tuned NER models. Furthermore, we show that the pipeline using a chain-of-thought prompting style with factual information retrieved via link traversal from an external KG achieves better entity disambiguation and linking than both a pipeline without chain-of-thought prompting and an approach relying only on information within the LLM.
Author(s)
Freund, Michael
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Dorsch, Rene
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Schmid, Sebastian
Friedrich-Alexander-Universität Erlangen-Nürnberg
Wehr, Thomas
Friedrich-Alexander-Universität Erlangen-Nürnberg
Harth, Andreas
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mainwork
Knowledge Graphs and Semantic Web  
Conference
International Conference on Knowledge Graphs and Semantic Web 2024  
DOI
10.1007/978-3-031-81221-7_8
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Keyword(s)
  • KG enhanced LLM

  • Natural Language Processing

  • RDF

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024