• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Surface-confined enzymatic method for scalable thin film generation
 
  • Details
  • Full
Options
2025
Journal Article
Title

Surface-confined enzymatic method for scalable thin film generation

Abstract
Thin-film coatings enhance the physical and chemical properties of materials. Despite various application methods, the functionalization of all surfaces without pre-treatment, control of thickness, and scalability remains challenging. In this paper, a surface-confined enzymatic approach for film formation to overcome these limitations is presented. To investigate the broad applicability of the reported coating strategy, two metals and six synthetic polymers were selected as substrates for coating with the conducting polymer polypyrrole (PPy). This approach employs an enzyme, a copper efflux oxidase (CueO), fused to Macaque Histatin (MacHis), a universal adhesion-promoting peptide, for pyrrole polymerization. Immobilized CueO-MacHis generates a homogenous PPy-coating on materials from an aqueous solution at ambient temperature. The reaction stops ‘automatically’ when pyrrole monomers can no longer reach or be oxidized by CueO. To demonstrate scalability, a metal plate measuring 30 × 100 cm was functionalized with CueO-MacHis via spraying, and coated with PPy by immersion. The durability of the PPy-coated metal surfaces was characterized according to DIN EN 60068–2–52 and acid exposure. The sheet resistance of the PPy-coated synthetic polymers was in the range of 109 to 8250 kΩ/sq, showing a change in surface conductivity from non-conductive to conductive. Our results demonstrate a universal and scalable surface-confined strategy for enzymatic thin film formation at ambient conditions, consisting of enzyme immobilization on untreated material surfaces, followed by polymerization and coating formation. This resource-efficient strategy allows the coating of high surface areas with a defined thickness and can be used as a platform for numerous other coatings and materials.
Author(s)
Nenninger, Chiara
Rheinisch-Westfälische Technische Hochschule Aachen
Contreras, Francisca
Rheinisch-Westfälische Technische Hochschule Aachen
Vorobii, Mariia
Leibniz Institute for Interactive Materials
Passos, Marisa Sárria Pereira de
Rheinisch-Westfälische Technische Hochschule Aachen
Gebauer, Jan
Rheinisch-Westfälische Technische Hochschule Aachen
Nöth, Maximilian
Rheinisch-Westfälische Technische Hochschule Aachen
Stütgens, Lutz
Rheinisch-Westfälische Technische Hochschule Aachen
Kadaoui, Hakim El
Rheinisch-Westfälische Technische Hochschule Aachen
Bergs, Thomas  
Fraunhofer-Institut für Produktionstechnologie IPT  
Schwaneberg, Ulrich
Rheinisch-Westfälische Technische Hochschule Aachen
Journal
Surfaces and Interfaces  
DOI
10.1016/j.surfin.2025.106046
Language
English
Fraunhofer-Institut für Produktionstechnologie IPT  
Keyword(s)
  • Biocatalysis, Conducting films

  • Enzyme immobilization

  • Scalability

  • Surface-confined enzymatic polymerization

  • Thin-film coatings

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024