• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Swarm learning with weak supervision enables automatic breast cancer detection in magnetic resonance imaging
 
  • Details
  • Full
Options
2025
Journal Article
Title

Swarm learning with weak supervision enables automatic breast cancer detection in magnetic resonance imaging

Abstract
Background:
Over the next 5 years, new breast cancer screening guidelines recommending magnetic resonance imaging (MRI) for certain patients will significantly increase the volume of imaging data to be analyzed. While this increase poses challenges for radiologists, artificial intelligence (AI) offers potential solutions to manage this workload. However, the development of AI models is often hindered by manual annotation requirements and strict data-sharing regulations between institutions.
Methods:
In this study, we present an integrated pipeline combining weakly supervised learning—reducing the need for detailed annotations—with local AI model training via swarm learning (SL), which circumvents centralized data sharing. We utilized three datasets comprising 1372 female bilateral breast MRI exams from institutions in three countries: the United States (US), Switzerland, and the United Kingdom (UK) to train models. These models were then validated on two external datasets consisting of 649 bilateral breast MRI exams from Germany and Greece.
Results:
Upon systematically benchmarking various weakly supervised two-dimensional (2D) and three-dimensional (3D) deep learning (DL) methods, we find that the 3D-ResNet-101 demonstrates superior performance. By implementing a real-world SL setup across three international centers, we observe that these collaboratively trained models outperform those trained locally. Even with a smaller dataset, we demonstrate the practical feasibility of deploying SL internationally with on-site data processing, addressing challenges such as data privacy and annotation variability.
Conclusions:
Combining weakly supervised learning with SL enhances inter-institutional collaboration, improving the utility of distributed datasets for medical AI training without requiring detailed annotations or centralized data sharing.
Author(s)
Saldanha, Oliver Lester
Medizinische Fakultät Carl Gustav Carus
Zhu, Jiefu
Medizinische Fakultät Carl Gustav Carus
Muller-Franzes, Gustav Anton
Uniklinik RWTH Aachen
Carrero, Zunamys Itzell
Uniklinik RWTH Aachen
Payne, Nicholas R.
Department of Radiology
Escudero Sanchez, Lorena
Department of Radiology
Varoutas, Paul Christophe
Mitera Maternity Hospital
Kyathanahally, Sreenath Pruthviraj
Universitätsspital Zürich, Institut für Diagnostische und Interventionelle Radiologie
Ghaffari Laleh, Narmin
Medizinische Fakultät Carl Gustav Carus
Pfeiffer, Kevin
Medizinische Fakultät Carl Gustav Carus
Ligero, Marta
Medizinische Fakultät Carl Gustav Carus
Behner, Jakob
Medizinische Fakultät Carl Gustav Carus
Abdullah, Kamarul Amin
Department of Radiology
Apostolakos, Georgios
Mitera Maternity Hospital
Kolofousi, Chrysafoula
Mitera Maternity Hospital
Kleanthous, Antri
Mitera Maternity Hospital
Kalogeropoulos, Michael
Mitera Maternity Hospital
Rossi, Cristina
Universitätsspital Zürich, Institut für Diagnostische und Interventionelle Radiologie
Nowakowska, Sylwia
Universitätsspital Zürich, Institut für Diagnostische und Interventionelle Radiologie
Athanasiou, Alexandra
Mitera Maternity Hospital
Perez-Lopez, Raquel
Vall d‘Hebron Institut de Oncologia
Mann, Ritse M.
Radboud University Medical Center
Veldhuis, Wouter Bernard
University Medical Center Utrecht
Camps, Julia
Ribera Salud Hospitals
Schulz, Volkmar
Fraunhofer-Institut für Digitale Medizin MEVIS  
Wenzel, Markus  
Fraunhofer-Institut für Digitale Medizin MEVIS  
Morozov, Sergey Pavlovich
European Society of Medical Imaging Informatics
Ciritsis, Alexander P.
Universitätsspital Zürich, Institut für Diagnostische und Interventionelle Radiologie
Kuhl, Christiane K.
Uniklinik RWTH Aachen
Gilbert, Fiona J.
Department of Radiology
Truhn, Daniel
Uniklinik RWTH Aachen
Kather, Jakob Nikolas
Medizinische Fakultät Carl Gustav Carus
Journal
Communications medicine  
Open Access
DOI
10.1038/s43856-024-00722-5
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Digitale Medizin MEVIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024