• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Data-driven fatigue assessment of welded steel joints based on transfer learning
 
  • Details
  • Full
Options
2025
Journal Article
Title

Data-driven fatigue assessment of welded steel joints based on transfer learning

Abstract
Data-driven or machine learning (ML) approaches already achieved significant success in many engineering areas even fatigue assessment of industrial parts and structures. Machine learning approaches work well under the common assumption that the training data covers the relevant feature space of the application. Rebuilding new models or establish new databases for similar feature spaces needs a high effort. In such cases, knowledge transfer or transfer learning can be used. In this study, transfer learning approach is used to determine the fatigue life of welded steel joints (target task) with a ML-algorithm that is trained in non-welded steel specimen. Twenty-two fatigue test data series were used. The results of the transfer learning approach were compared with a conventional machine learning approach that was trained also on data of welded joints. Furthermore, the results were compared to an advanced analytical approach (IBESS) for the fracture mechanic-based fatigue life assessment of welded joints and fatigue strength values from recommendations.
Author(s)
Schubnell, Jan
Fraunhofer-Institut für Werkstoffmechanik IWM  
Fliegener, Sascha  
Fraunhofer-Institut für Werkstoffmechanik IWM  
Rosenberger, Johannes
Fraunhofer-Institut für Werkstoffmechanik IWM  
Feth, Sascha  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Braun, Moritz
Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Beiler, Marten
Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Baumgartner, Jörg  orcid-logo
Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF  
Journal
Welding in the world  
Open Access
DOI
10.1007/s40194-025-01967-x
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Werkstoffmechanik IWM  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF  
Keyword(s)
  • Data-driven approach

  • Fatigue

  • Machine learning

  • Transfer learning

  • Welded joints

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024