• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Evaluating Coreset Methods to enhance Hyperparameter Tuning Efficiency
 
  • Details
  • Full
Options
2025
Master Thesis
Title

Evaluating Coreset Methods to enhance Hyperparameter Tuning Efficiency

Abstract
The pipeline introduced in this paper takes in a coreset method, a dataset a model and a hyperparameter algorithm, which selects a coreset to be used in the selection process. The resulting hyperparameter sets are used to train the model. This results in up to 70% in time savings while the performance of the model does deteriorate only marginal, compared to when using the full dataset for the hyperparameter optimization. These results were obtained using two datasets within the topic of computer vision: cifar10, a classification benchmark, and potsdam, a geo semantic segmnetation task. The coreset method ”Herding” generated the best performing subsets relevant to hyperparameter tuning.
Thesis Note
Darmstadt, TU, Master Thesis, 2025
Author(s)
Hoebelt, Dennis
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Advisor(s)
Kuijper, Arjan  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Krämer, Michel  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kocon, Kevin  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Information Technology

  • Branche: Bioeconomy

  • Research Line: Computer graphics (CG)

  • Research Line: Machine learning (ML)

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • Geospatial data

  • Artificial intelligence (AI)

  • Convolutional Neural Networks (CNN)

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024