• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. AutoQML: A Framework for Automated Quantum Machine Learning
 
  • Details
  • Full
Options
2025
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

AutoQML: A Framework for Automated Quantum Machine Learning

Title Supplement
Published on ArXiv
Abstract
Automated Machine Learning (AutoML) has significantly advanced the efficiency of ML-focused software development by automating hyperparameter optimization and pipeline construction, reducing the need for manual intervention. Quantum Machine Learning (QML) offers the potential to surpass classical machine learning (ML) capabilities by utilizing quantum computing. However, the complexity of QML presents substantial entry barriers. We introduce \emph{AutoQML}, a novel framework that adapts the AutoML approach to QML, providing a modular and unified programming interface to facilitate the development of QML pipelines. AutoQML leverages the QML library sQUlearn to support a variety of QML algorithms. The framework is capable of constructing end-to-end pipelines for supervised learning tasks, ensuring accessibility and efficacy. We evaluate AutoQML across four industrial use cases, demonstrating its ability to generate high-performing QML pipelines that are competitive with both classical ML models and manually crafted quantum solutions.
Author(s)
Roth, Marco
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Kreplin, David
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Basilewitsch, Daniel
TRUMPF SE + Co. KG
Bravo, João
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Klau, Dennis
Univ. Stuttgart, Institut für Arbeitswissenschaft und Technologiemanagement -IAT-  
Marinov, Milan
Pranjic, Daniel
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Stühler, Horst
Willmann, Moritz
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Zöller, Marc-André
USU GmbH
Project(s)
AutoQML - Developer-Suite für automatisiertes maschinelles Lernen mit Quantencomputern  
Funder
Bundesministerium für Wirtschaft und Klimaschutz  
Open Access
File(s)
2025_Bravo_AutoQML.pdf (932.53 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.48550/arXiv.2502.21025
10.24406/publica-4472
Language
English
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024