• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Deep Learning-Based Optical Character Recognition for Identifying On-Label Printed Part Numbers of Used Automotive Parts: A Comparative Study of Open Source and Commercial Methods
 
  • Details
  • Full
Options
2025
Conference Paper
Title

Deep Learning-Based Optical Character Recognition for Identifying On-Label Printed Part Numbers of Used Automotive Parts: A Comparative Study of Open Source and Commercial Methods

Abstract
This paper explores the use of deep learning-based optical character recognition (OCR) to identify part numbers for used automotive parts. It compares open source and advanced AI methods to commercial tools from Google, Amazon, and Microsoft. The study finds that fine-tuned open source models outperform commercial services, especially for complex part numbers unrelated to any language structure. The preferred open source method, MaskedTextSpotter, is fine-tuned with image data from old vehicle and electrical parts, captured by a smartphone and 2D barcode scanner. Additionally, a new data augmentation method, CharChan, is introduced, replacing detected characters with random examples for better character recognition. The experiments demonstrate the efficacy of deep learning-based OCR for automotive part number identification.
Author(s)
Schlüter, Marian  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Tepper, Christian Phillip
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Briese, Clemens  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Kröger, Ole
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Vicente Garcia, Raul
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Krüger, Jörg  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Mainwork
Sustainable Manufacturing as a Driver for Growth. 19th Global Conference on Sustainable Manufacturing. Proceedings  
Conference
Global Conference on Sustainable Manufacturing 2023  
DOI
10.1007/978-3-031-77429-4_58
Language
English
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Keyword(s)
  • Artificial intelligence

  • Circular economy

  • Optical character recognition

  • Reverse logistics

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024