• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Cubature-based uncertainty estimation for nonlinear regression models
 
  • Details
  • Full
Options
2025
Journal Article
Title

Cubature-based uncertainty estimation for nonlinear regression models

Abstract
Models are commonly utilized in chemical engineering to simulate real-world processes and phenomena. Given their role in guiding decision-making, accurately quantifying the uncertainty of these models is essential. Typically, these models are calibrated using experimental data that contain measurement errors, leading to uncertainty in the fitted model parameters. Current methods for estimating the prediction uncertainty of nonlinear regression models are often either computationally intensive or biased. In this study, we use sparse cubature formulas to estimate the prediction uncertainty of nonlinear regression models. Our findings indicate that this method provides a favorable balance between accuracy and computational efficiency, making it suitable for application in chemical engineering. We validate the performance of our proposed method through various regression case studies, including both theoretical toy models and practical models from chemical engineering.
Author(s)
Bubel, Martin
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Schmid, Jochen  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Carmesin, Maximilian
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Kozachynskyi, Volodymyr
Technische Universität Berlin
Esche, Erik
Technische Universität Berlin
Bortz, Michael  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Journal
Computers and Chemical Engineering  
Open Access
DOI
10.1016/j.compchemeng.2025.109035
Additional link
Full text
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • Model uncertainty

  • Nonlinear models

  • Parameter estimation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024