• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Evaluating robotic actions
 
  • Details
  • Full
Options
2025
Journal Article
Title

Evaluating robotic actions

Title Supplement
Spatiotemporal brain dynamics of performance assessment in robot-assisted laparoscopic training
Abstract
Introduction: Enhancing medical robot training traditionally relies on explicit feedback from physicians to identify optimal and suboptimal robotic actions during surgery. Passive brain-computer interfaces (BCIs) offer an emerging alternative by enabling implicit brain-based performance evaluations. However, effectively decoding these evaluations of robot performance requires a comprehensive understanding of the spatiotemporal brain dynamics identifying optimal and suboptimal robot actions within realistic settings.
Methods: We conducted an electroencephalographic study with 16 participants who mentally assessed the quality of robotic actions while observing simulated robot-assisted laparoscopic surgery scenarios designed to approximate real-world conditions. We aimed to identify key spatiotemporal dynamics using the surface Laplacian technique and two complementary data-driven methods: a mass-univariate permutation-based clustering and multivariate pattern analysis (MVPA)-based temporal decoding. A second goal was to identify the optimal time interval of evoked brain signatures for single-trial classification.
Results: Our analyses revealed three distinct spatiotemporal brain dynamics differentiating the quality assessment of optimal vs. suboptimal robotic actions during video-based laparoscopic training observations. Specifically, an enhanced left fronto-temporal current source, consistent with P300, LPP, and P600 components, indicated heightened attentional allocation and sustained evaluation processes during suboptimal robot actions. Additionally, amplified current sinks in right frontal and mid-occipito-parietal regions suggested prediction-based processing and conflict detection, consistent with the oERN and interaction-based ERN/N400. Both mass-univariate clustering and MVPA provided convergent evidence supporting these neural distinctions.
Discussion: The identified neural signatures propose that suboptimal robotic actions elicit enhanced, sustained brain dynamics linked to continuous attention allocation, action monitoring, conflict detection, and ongoing evaluative processing. The findings highlight the importance of prioritizing late evaluative brain signatures in BCIs to classify robotic actions reliably. These insights have significant implications for advancing machine-learning-based training paradigms.
Author(s)
Lingelbach, Katharina  
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Rips, Jennifer
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Karstensen, Lennart  
Friedrich-Alexander-Universität Erlangen-Nürnberg
Mathis-Ullrich, Franziska
Friedrich-Alexander-Universität Erlangen-Nürnberg
Vukelic, Mathias  
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Journal
Frontiers in neuroergonomics  
Project(s)
MINT Innovationen
KI-Fortschrittszentrum »Lernende Systeme und Kognitive Robotik«  
Funder
Vector Stiftung Baden-Württemberg
Baden-Württemberg, Ministerium für Wirtschaft, Arbeit und Wohnungsbau  
Open Access
File(s)
2025_Lingelbach_Evaluating robotic actions.pdf (6 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.3389/fnrgo.2025.1535799
10.24406/publica-4436
Language
English
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO  
Keyword(s)
  • robot training

  • performance monitoring

  • spatio-temporal clustering

  • temporal decoding

  • machine learning

  • electroencephalography

  • EEG

  • passive brain-computer interfaces

  • BCIs

  • current source density

  • CSD

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024