• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. On Data Spaces for Retrieval Augmented Generation
 
  • Details
  • Full
Options
2024
Conference Paper
Title

On Data Spaces for Retrieval Augmented Generation

Abstract
Large Language Models (LLMs) have revolutionized knowledge retrieval from natural language queries. However, LLMs still face challenges regarding the creation of domain-specific and accurate answers. Recently, Retrieval Augmented Generation (RAG) architecture has been proposed as one approach to addressing these challenges. While current research focuses on optimizing document retrieval and augmenting the initial query accordingly, we identify untapped potentials of RAG to retrieve knowledge from heterogeneous data sources via data spaces. In this work, we investigate three conceptual integration scenarios between RAG and data spaces. Our findings indicate that given the data space extended RAG, it could provide domain-specific information retrieval with diverse data sources. However, solutions to mitigate unintended information leakage require further consideration.
Author(s)
Hermsen, Felix  
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Nitz, Lasse  orcid-logo
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Akbari Gurabi, Mehdi  orcid-logo
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Matzutt, Roman  orcid-logo
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Mandal, Avikarsha  
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Mainwork
INFORMATIK 2024. Lock-in or log out? Wie digitale Souveränität gelingt. Proceedings  
Conference
Gesellschaft für Informatik (GI Jahrestagung) 2024  
DOI
10.18420/inf2024_57
Language
English
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Keyword(s)
  • Data Sharing

  • Data Spaces

  • Large Language Models

  • Retrieval Augmented Generation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024