Options
2025
Journal Article
Title
Context-Aware Tomato Leaf Disease Detection Using Deep Learning in an Operational Framework
Abstract
Tomato cultivation is a vital agricultural practice worldwide, yet it faces significant challenges due to various diseases that adversely affect crop yield and quality. This paper presents a novel tomato disease detection system within an operational framework that leverages an innovative deep learning-based classifier, specifically a Vision Transformer (ViT) integrated with cascaded group attention (CGA) and a modified Focaler-CIoU (Complete Intersection over Union) loss function. The proposed method aims to enhance the accuracy and robustness of disease detection by effectively capturing both local and global contextual information while addressing the challenges of sample imbalance in the dataset. To improve interpretability, we integrate Explainable Artificial Intelligence (XAI) techniques, enabling users to understand the rationale behind the model’s classifications. Additionally, we incorporate a large language model (LLM) to generate comprehensive, context-aware explanations and recommendations based on the identified diseases and other relevant factors, thus bridging the gap between technical analysis and user comprehension. Our evaluation against state-of-the-art deep learning methods, including convolutional neural networks (CNNs) and other transformer-based models, demonstrates that the ViT-CGA model significantly outperforms existing techniques, achieving an overall accuracy of 96.5%, an average precision of 93.9%, an average recall of 96.7%, and an average F1-score of 94.2% for tomato leaf disease classification. The integration of CGA and Focaler-CIoU loss not only contributes to improved model interpretability and stability but also empowers farmers and agricultural stakeholders with actionable insights, fostering informed decision making in disease management. This research advances the field of automated disease detection in crops and provides a practical framework for deploying deep learning solutions in agricultural settings, ultimately supporting sustainable farming practices and enhancing food security.
Open Access
Rights
CC BY 4.0: Creative Commons Attribution
Language
English