• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. AI-supported selection procedure for spectral sensors based on technical and economic characteristics
 
  • Details
  • Full
Options
2024
Conference Paper
Title

AI-supported selection procedure for spectral sensors based on technical and economic characteristics

Abstract
This study presents an AI-supported spectral sensor selection process that combines technical and economic criteria to recommend the optimal sensor for specific applications, such as quality control of roasted coffee beans. Using a comprehensive database of spectral sensor characteristics, the SMART algorithm guides decisions that focus on both performance and cost-effectiveness. Our methodology involves simulating spectral responses and using an AI model to evaluate sensor effectiveness in classifying coffee bean types. Initial results highlight the method's ability to optimise sensor selection, effectively balancing performance with budget considerations, and underscore its potential to improve user decision making in technology applications and enhance their digital sovereignty.
Author(s)
Menz, Patrick
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Klein, Lauritz
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Herzog, Andreas  
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Mainwork
INFORMATIK 2024. Lock-in or log out? Wie digitale Souveränität gelingt. Proceedings  
Conference
Gesellschaft für Informatik (GI Jahrestagung) 2024  
DOI
10.18420/inf2024_111
Language
English
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024