• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Machine Learning Pipeline For Anomaly Detection In Next Generation Networks
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Machine Learning Pipeline For Anomaly Detection In Next Generation Networks

Abstract
Deploying Machine Learning (ML) models in Next Generation Network (NGN) presents significant challenges, particularly in managing the entire lifecycle of model creation, deployment, and operation. Traditional methods lack integrated pipelines that address the diverse and complex nature of the network, leading to inefficiencies and delays. The NEMI framework employs MLOps pipelines designed to streamline the ML lifecycle in NGN environments. The pipeline facilitates efficient data collection, model generation, and deployment, towards ensuring scalability, automation, and continuous integration. The approach in this article showcases the pipeline’s potential to enhance performance and reliability in NGN domains, emphasizing the critical role of advanced MLOps pipelines in optimizing ML operations within complex network environments. Using anomaly detection in a core network (Open5GCore) as a practical example, we demonstrate the pipeline’s features.
Author(s)
Gopikrishnan, Akash
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Rao, Alqama
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Prakash, Arun  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Gowtham, Varun  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Schreiner, Florian
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Corici, Marius-Iulian  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Hein, Christian  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Magedanz, Thomas  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Mainwork
IEEE Conference on Standards for Communications and Networking, CSCN 2024  
Conference
Conference on Standards for Communications and Networking 2024  
DOI
10.1109/CSCN63874.2024.10849724
Language
English
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Keyword(s)
  • Scalability

  • Pipelines

  • Data collection

  • Feature extraction

  • Data models

  • Delays

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024