• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Advancing Risk and Quality Assurance: A RAG Chatbot for Improved Regulatory Compliance
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Advancing Risk and Quality Assurance: A RAG Chatbot for Improved Regulatory Compliance

Abstract
Risk and Quality (R&Q) assurance in highly regulated industries requires constant navigation of complex regulatory frameworks, with employees handling numerous daily queries demanding accurate policy interpretation. Traditional methods relying on specialized experts create operational bottlenecks and limit scalability. We present a novel Retrieval Augmented Generation (RAG) system leveraging Large Language Models (LLMs), hybrid search and relevance boosting to enhance R&Q query processing. Evaluated on 124 expert-annotated real-world queries, our actively deployed system demonstrates substantial improvements over traditional RAG approaches. Additionally, we perform an extensive hyperparameter analysis to compare and evaluate multiple configuration setups, delivering valuable insights to practitioners.
Author(s)
Hillebrand, Lars Patrick  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Berger, Armin
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Uedelhoven, Daniel
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Berghaus, David
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Warning, Ulrich
PricewaterhouseCoopers GmbH
Dilmaghani, Tim
PricewaterhouseCoopers GmbH
Kliem, Bernd
PricewaterhouseCoopers GmbH
Schmid, Thomas
PricewaterhouseCoopers GmbH
Loitz, Rüdiger  
PricewaterhouseCoopers GmbH
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
IEEE International Conference on Big Data 2024. Proceedings  
Project(s)
The Lamarr Institute for Machine Learning and Artificial Intelligence  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
International Conference on Big Data 2024  
DOI
10.1109/BigData62323.2024.10825431
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Large Language Models

  • Retrieval Augmented Generation

  • Legal

  • Compliance

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024