• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Hamiltonian-Based Quantum Reinforcement Learning for Neural Combinatorial Optimization
 
  • Details
  • Full
Options
2024
Conference Paper
Title

Hamiltonian-Based Quantum Reinforcement Learning for Neural Combinatorial Optimization

Abstract
Advancements in Quantum Computing (QC) and Neural Combinatorial Optimization (NCO) represent promising steps in tackling complex computational challenges. On the one hand, Variational Quantum Algorithms such as QAOA can be used to solve a wide range of combinatorial optimization problems. On the other hand, the same class of problems can be solved by NCO, a method that has shown promising results, particularly since the introduction of Graph Neural Networks. Given recent advances in both research areas, we introduce Hamiltonian-based Quantum Reinforcement Learning (QRL), an approach at the intersection of QC and NCO. We model our ansatzes directly on the combinatorial optimization problem's Hamiltonian formulation, which allows us to apply our approach to a broad class of problems. Our ansatzes show favourable trainability properties when compared to the hardware efficient ansatzes, while also not being limited to graph-based problems, unlike previous approaches. In this work, we evaluate the performance of Hamiltonian-based QRL on a diverse set of combinatorial optimization problems to demonstrate the broad applicability of our approach and compare it to QAOA.
Author(s)
Kruse, Georg  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Coelho, Rodrigo
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Roßkopf, Andreas  
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Wille, Robert
Technische Universität München  
Lorenz, Jeanette Miriam  orcid-logo
Fraunhofer-Institut für Kognitive Systeme IKS  
Mainwork
IEEE Quantum Week 2024. Proceedings. Volume III: Third IEEE Quantum Science and Engineering Education Conference, QSEEC 2024  
Project(s)
Munich Quantum Valley
Funder
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie  
Conference
Quantum Science and Engineering Education Conference 2024  
Quantum Week 2024  
Open Access
DOI
10.1109/QCE60285.2024.00189
Language
English
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB  
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • quantum reinforcement learning

  • QRL

  • combinatorial optimization

  • neural combinatorial optimization

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024